RED RIDGE PROJECT
WHITEHORSE MINING DISTRICT YUKON

CLAIMS
AZURITE 1 YC29966
AZURITE 2 YC29986
AZURITE 3 – 4 YC40121 – YC40122
AZURITE 5 – 7 YC40004 – YC40006
BB 1 – 2 YC29967 – YC29968
BB 3 – 4 YC40296 – YC40297
LA 1 - 8 YC39261 - YC39268
LA 9 – 11 YC40007 – YC40009
WS 1 – 4 YC40116 – YC 40119
WS 5 YC40125
WG 1 – 2 YC40123-YC40124

LOCATION: 1. NTS Map No 105 D/6
 2. 40 Km South of Whitehorse
 3. Latitude 60 degree 21’ North
 Longitude 135 degree 10’ West

Prepared by Larry Bratvold
 Prospector
INTRODUCTION

Prospectors Larry Bratvold and Brian Scott are joint owners of the Red Ridge property located south of Whitehorse Yukon. The property is available for option to qualified exploration companies. This report has been prepared by L Bratvold to familiarize interested parties with the geology, previous exploration history, and the exploration potential of the Red Ridge property.
TABLE OF CONTENTS

SUMMARY ... 1
LOCATION AND ACCESS ... 2
HISTORY ... 3
PROPERTY ... 4
CLIMATE, TOPOGRAPHY, AND VEGETATION .. 5
REGIONAL GEOLOGY .. 6
GEOLOGY OF RED RIDGE PROPERTY .. 7
ALTERATION AND MINERALIZATION ... 8
 GOLD/SILVER VEINS
 EAST ZONE ... 8
 DON ZONE ... 8
 SADDLE ZONE .. 9
 MILLER ZONE ... 9
 COPPER/MOLYBDENUM MINERALIZATION
 PORPHYRY STYLE .. 10
 VEIN STYLE COPPER/MOLY ... 10
 GOSSAN ZONE .. 11
CONCLUSIONS AND RECOMMENDATIONS .. 13
REFERENCES ... 15
STATEMENT OF QUALIFICATIONS ... 16
SUMMARY

The Red Ridge property consists of 29 quartz claims located in the Whitehorse mining district 40 kilometers south of Whitehorse. The claims are accessible by road from Whitehorse.

The property covers the hornfelsed contact between an undifferentiated, protacted intrusive complex containing Late Triassic and Late Cretaceous aged granodiorite and argillite, limestone, chert and sandstone of the Jurassic Laberge Group. The hornfelsed rocks form a large gossan along the east-west ridge. Andesitic flows, breccia and tuff outcrop in the west and northeast areas of the property and are cut by northeast trending rhyolite, andesite and fine grained granitic dykes. The intrusions have resulted in contact metamorphic aureoles of calcareous metasediments enriched in iron and anomalous in precious metals. Skarnification and silicification are present particularly near intrusive contacts.

Exploration carried out to date has focused on and identified several vein-type gold/silver occurrences. High gold/silver values (up to 1.3 oz/t Au and 810 oz/t Ag) have been obtained from shear zone hosted quartz veins. Lower gold and silver values are also present both in sediments proximal to contact zones and in felsic intrusions.

Stream sediments, rock, and soil samples taken along the north and south flanks of Red Ridge indicate a 1500 meter long section of the ridge shedding anomalous values of gold and/or silver. The source of the metals yielding these values is attributed to unusually enriched gold and silver contents in gossanous hornfelsed metasediments, perhaps as vein type structure or disseminated gold/silver in the sediments.

High grade copper (up to 10 % Cu) and molybdenum (up to 1.6% MO) have been found in veins up to 1.5 meter width.

Porphyry style copper/moly mineralization has been identified in intrusive bodies on the eastern portion of the property.

A large Au/Ag geochemical anomaly has been located over the felsic intrusion on the eastern portion of red ridge.

Geology and previous exploration indicate that exploration targets on the Red Ridge property consist of:

1. Gold and silver hosted in vein-type structures.
2. Gold and silver hosted in skarns.
3. Gold and silver with disseminated sulfides in sediments.
4. Porphyry style copper/molybdenum/gold/silver
LOCATION AND ACCESS

The Red Ridge property is located in the southwestern Yukon Territory approximately 40 kilometers south of Whitehorse. The claims cover part of the ridge known as Red Ridge, separating Thompson and Morrison Creeks from the Watson River.

Access to the property is from the paved South Klondike Highway and then 19 kilometers on the gravel Annie Lake road. From kilometer post 19, a four wheel drive road leads to the property. ATV roads throughout the property give access to the mineralized occurrences.
HISTORY

Considerable prospecting was carried out in the Wheaton and Watson River areas starting in the early 1900s, culminating in the discovery of numerous gold and silver deposits and occurrences. The Legal Tender (gold/silver vein), Gold Hill (gold vein), and the Idaho Hill (gold/silver/lead/zinc) veins were discovered within 5 kilometers of the Red Ridge property during this period. Intermittent exploration and prospecting in the district has been on-going since that time.

In 1981 Agip Canada Ltd discovered a gold ore body at Mt. Skukum, some 23 kilometers from Red Ridge, and started a resurgence of exploration activity in the area. This era of exploration resulted in Omni Resources Ltd discovering additional ore bodies at Skukum Creek and Goddell Gully which have since been acquired by Tagish Lake Gold Corp. Tagish Lake Gold Corp has announced that they have a currently defined, measured, plus indicated resource of 1,120,000 tonnes grading 8g/t Au and 153.1 g/t Ag in their Skukum Creek and Goddell Gully deposits. Current work is underway to extend their reserves before going into production.

Exploration for porphyry copper/molybdenum on Red Ridge was done by Inco Limited in the early 1970s.

Precious metal exploration wasn’t initiated on Red Ridge until 1985 when Havilah Gold Mines and New Era Developments discovered several gold/silver veins on Red Ridge. Exploration consisted of prospecting, soil and rock geochemistry, mechanical trenching, and exploratory diamond drilling.

Veins consist of bleached and sheared wall rock up to 5 meters wide which contain quartz veins mineralized with pyrite, galena, chalcopyrite and sphalerite. Mineralized quartz assayed up to 1.12 oz/t Au. A barite/tetrahedrite vein returned values to 810 oz/t Ag. Precious metal values, wallrock associations, structural control, and surface expressions of mineralization are considered to be consistent with those that led to the discovery of the Rainbow-Road Zone located at nearby Skukum Creek.

Prospector Larry Bratvold staked the property in 2004 and 2005 to cover the known mineral occurrences and to investigate the bulk tonnage potential of the calcareous sediments and felsic intrusives.
PROPERTY

The property consists of 29 two post unsurveyed mineral claims staked under the Yukon Quartz Mining Act totaling approximately 1312 acres. Claim data as follows:

<table>
<thead>
<tr>
<th>Claim</th>
<th>YC Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZURITE 1</td>
<td>YC29966</td>
</tr>
<tr>
<td>AZURITE 2</td>
<td>YC29986</td>
</tr>
<tr>
<td>AZURITE 3-4</td>
<td>YC40121 – YC40122</td>
</tr>
<tr>
<td>AZURITE 5-7</td>
<td>YC40004 – YC40006</td>
</tr>
<tr>
<td>BB 1-2</td>
<td>YC29967 – YC29968</td>
</tr>
<tr>
<td>BB 3-4</td>
<td>YC40296 – YC40197</td>
</tr>
<tr>
<td>LA 1-8</td>
<td>YC39261 – YC39268</td>
</tr>
<tr>
<td>LA 9-11</td>
<td>YC40007 – YC40009</td>
</tr>
<tr>
<td>WS 1-4</td>
<td>YC40116 – YC 40019</td>
</tr>
<tr>
<td>WS 5</td>
<td>YC40125</td>
</tr>
<tr>
<td>WG 1-2</td>
<td>YC40123-YC40124</td>
</tr>
</tbody>
</table>

The recorded owners of the claims are Larry Bratvold and Brian Scott with each owning 50% interest in the above claims.
BRATVOLD/SCOTT
RED RIDGE CLAIMS
CLIMATE, TOPOGRAPHY, AND VEGETATION

The climate in the area of the Red Ridge property is variable with hot summers and long cold winters. Precipitation is light, averaging about 40 cm annually with heavy snowfalls occurring during the winter months.

Red Ridge is situated at the eastern flank of the Coast Mountains, topography in the area is rugged. Elevations on the property range from 1050 to 1650 meters above sea level. Glaciation has greatly modified the area, and glacial features such as u-shaped valleys, arêtes and cirques are common.

Vegetation consists of stunted spruce, jack pine, and poplar. Alpine shrubs and willows occur above 1150 elevation along with alpine grasses.
The Red Ridge property is situated on the eastern flank of the Coast Plutonic Belt. Regionally, the district is underlain by a Jurassic-Triassic volcano-sedimentary package intruded by the Cretaceous Coast Plutonic Complex. These units are unconformably overlain by the Tertiary Skukum Group volcanics. Precious metal mineralization in quartz veins and shear zones throughout the district are associated with hypabyssal intrusives of the Skukum Group volcanics.

Jurassic-Triassic andesitic flows and breccias outcrop throughout the district. These flows are overlain by the Lewes River Group rocks. Disconformably overlying the Lewes River Group are the Jurassic Laberge and Tantalus Formation. The Laberge Group consists of siliclastic sedimentary rocks with minor andesite. The Tantalus Formation is comprised of finer siliclastic sedimentary rocks including chert pebble conglomerate.

The Jurassic-Triassic assemblage has been intruded by quartz monzonites, granites, granodiorites and diorites of the Cretaceous Coast Plutonic Complex. The Jurassic-Triassic package and the Coast Plutonic Complex outcrop throughout the district.

The Skukum Group Volcanics unconformably overlie the older units. The Group is comprised of felsic pyroclastics, tuffs and flows, andesitic flows and breccias, dacite flows, basalt and volcaniclastic sediments. Associated low level intrusives complete the Skukum Group lithologies.

Of particular interest is the location of a northeast trending felsic dyke swarm along Red Ridge.
GEOLGY OF THE RED RIDGE PROPERTY

Property geology is much more complex than can be shown on the previously described regional mapping. Rock outcrops are restricted to ridge flanks, and probably constitute less than 25% of the total property area.

Mafic to intermediate unnamed volcanic rocks of probable lower Mesozoic age are exposed throughout the Red Ridge property. They are typically black, fine grained basaltic andesite flows. Minor volcanic breccias and intervolcanic sediments are also present. Alteration includes silicification and propylitization. These units are in fault contact with other Mesozoic sediments and volcanics and are intruded by granodiorite.

Fine grained sedimentary rocks of the Jurassic Laberge Group are exposed at the east-central part of the ground. Argillites, limestones, cherts and quartzites comprise this unit. Silicification and skarnification are present, particularly near intrusive contacts.

Light coloured, sometimes rusty weathering, rhyolite and andesite has intruded all other rock units on the property as dykes and possible sills. These are probably a hypabyssal equivalent to the Eocene Skukum group. Remnant porphyritic to subporphyritic and flow banded textures are present, but they are commonly aphanitic. Pyrite, usually weathered, is a common constituent. These late stage magmatic dykes and sills are emplaced along zones of structural weakness, including faults and sedimentary bedding planes.

A large prominent gossan occurs along the central part of Red Ridge. It is attributed to hornfelsed metasediments where primary pyrite has been reduced to pyrrhotite during contact metamorphism with subsequent surface oxidation. Gossans not directly associated with exposed intrusive dykes and the overall size of the metamorphic aureole on the Red Ridge property could be suggestive of a large buried intrusion as a possible source of alteration and mineralization.

Cretaceous medium grained granodiorite intrudes the lower Mesozoic strata in several locations on the Red Ridge property. The intrusion is the prominent rock type on the east half of the property. Porphyry copper style mineralization occurs within the granodiorite on this part of the property. Although the granodiorite in this zone is texturally similar to the granodiorite on other parts of the property, it may represent a younger phase. This intrusive body underlies a large significant gold/silver geochemical anomaly.

Many structures, including, bedding and dykes display a preferred steeply dipping northeast trend, discordant with the regional trend. Mafic minerals in the granodiorite locally show parallelism, suggesting that regional deformation took place after the intrusion.
ALTERATION AND MINERALIZATION

Several zones of mineralization have been found on the Red Ridge property. Most of the exploration to date has focused on sulphide-bearing quartz veins and shear zones with the following zones identified.

East Zone

The east zone consists of at least three subparallel, limonite and clay altered gouge zones surrounded by a large argillic alteration halo. Hand trenching on on zone gave a known width of mineralization exceeding 15 meters. This zone hosts a 10 to 40 cm quartz/barite vein containing massive tetrahedrite, azurite, and malachite. Sampling of the vein returned assays to 810 opt silver. Mechanical trenching exposed the barite/tetrahedrite vein for 20 meters. A drilling program over this zone was abandoned because of poor core recovery due to bad ground conditions. However the structure was intersected at 50, 172, and 300 ft depths.

Gossanous soils in the immediate area were anomalous in gold and silver as well as copper, lead, zinc, arsenic, antimony, and mercury. Galena specimens found in hand trenched rubble assayed 5598 gm/t silver, .53 gm/t gold, and 57.5 % lead. This material has not been found in place.

A soil geochemical grid has identified two additional, broad, elliptical, silver/lead anomalies suggesting other vein/shear zones in the immediate area. Review of soil samples suggest that the silver values increase away from the clay gouge zones and is highest in value in the vicinity of mafic dykes (average of 319.70 gm/t over 15 meters in 1 meter soil samples). The bulk tonnage potential of this area has yet to be investigated.

Don Zone

The Don Zone consists of a one meter wide zone of argillically altered granodiorite that is silicified, chloritized, and contains pods and seams of manganese stained quartz. Sampling returned an average of 10.8 gr/t Au and 1519 gr/t Ag across .5 meters, over a length of 39 meters. The zone has been exposed for 42 meters along strike. A trench, 150 meters to the northwest, exposes a possible strike length of the Don Zone. No sulphide minerals have been found in the Don Zone material.

Three drill holes explored the Don Zone to a depth of 30 meters. Core recovery again was a problem, as low as 30% due to bad ground conditions. Review of the drill core logs show an abundance of unsampled porphyry style mineralization.
Saddle Zone

The Saddle Zone was discovered through prospecting when several small outcrops and boulders of silicified granodiorite and quartz-galena veins were found over a 20 x 50 meter area. Two initial grab samples from this zone contained 11.35 gm/t gold and 300.1 gm/t silver, and 34.8 gm/t gold and 342.1 gm/t silver. The quartz veins contained trace to several percent galena and chalcopyrite. Precious metal values were not limited to samples with sulphides indicating the presence of free gold or electrum.

Further trenching and exploratory drilling show that the Saddle Zone consists of limonite-manganese-clay gouge within a 30 meter wide zone of alteration and shearing. The sulfide bearing quartz veins are surrounded by a quartz stockwork zone up to 1.5 meters wide. The quartz vein returned an average of 6.1 g/t gold and 423 gt silver over .5 meters for a length of 42 meters. Drilling of this zone produced values up to 28.9 g/t gold and 31.51 g/t silver over .4 meters. Wall rock was not sampled.

Sidehill Ventures Ltd of Whitehorse reviewed the drill logs and sent several core intervals in for assay. A 5 ft section of fractured, limonitic, granodiorite adjacent to a previous assayed section of core assayed 2.34 gt gold giving the weighted average of 2.87 g/t gold over 7.4 feet. It was determined that the sample interval selections were biased toward quartz veins and veinlets ignoring the potential of the wider zones of silicified granodiorite.

Road construction for drill pads has exposed potassic altered granodiorite with porphyry style mineralization immediately adjacent to the saddle zone. Review of the drill core shows an abundance of porphyry style mineralization. This area remains unsampled but soil geochem shows it to be part of a large gold/silver anomaly. Surface expression and soil geochem also indicate significant (100s x meters) unexplored strike potential for the Saddle Zone.

Miller Zone

On the surface, the Miller Zone consists of a 2 to 3 meter wide zone of shearing and alteration that contains galena/quartz pods throughout. In addition galena, pyrite, quartz veins, 10 to 30 centimeters in width, occur in both the footwall and hanging wall of the zone. The host is a boulder and pebble conglomerate. Alteration consists of limonite, manganese and chlorite. Malachite and azurite were also noted. Grab samples of the quartz galena assayed 28.4 883.24 gm/t silver with negligible gold. Surface exploration has been limited to the discovery showing so the strike potential of the Miller Zone is unknown.
The Miller Zone was intersected in each of the 8 holes drilled, with the character of the Zone changing along strike to the south and with depth. A conglomerate with cobbles of granodiorite and andesite was the only rock type intersected. The northern shallow holes intersected a 2 to 5 meter wide zone of brecciation and argillic alteration with an associated 30 cm wide galena/quartz vein. The best intersection was 3.11 gold and 309.1 gm/t silver over .76 meters.

Recent exploration of the road cut next to the Miller Zone has identified a large zone of iron rich breccia. No precious metal values were present in the one sample taken but this could be the surface expression of the zone mentioned above. Gold content in the Miller Zone itself seems to be increasing at depth.

The deeper holes intersected a four to six meter wide carbonate stockwork/argillic alteration/limonite zone with little associated quartz. The Miller Zone is widening at depth from two to four meters near surface to four to six metres at a depth of 50 meters.

Interesting structure was intersected in the hanging wall of the Miller Zone, with indications of a least one parallel structure. Assay values to .71 gm/t gold and 9.64 gm/t silver over 2.13 meters were obtained from this argillic alteration/carbonate stockwork structure. A small lens of weak argillic alteration returned 3.12 gm/t gold and 98.8 gm/t silver over .15 meters.

Other Gold/Silver Shear Zones.

Numerous other occurrences of sulfide bearing quartz veins occurring in shear zones have been identified throughout the property. These have had very little exploration done on them since their discovery and are too numerous to list. Grab samples from these zones have assayed silver values to 2246 gm/t silver and 8.7 gm/t gold.

Copper/molybdenum Mineralization

Porphyry Style

Initial exploration in 1974 by Inco Ltd was directed toward a small (250 x 300 meters) porphyry copper system located on the southeast portion of the property. Mineralization consists of pyrite, chalcopyrite, bornite, and molybdenite with associated malachite in quartz veinlets and disseminations in the hornblende diorite. Secondary potassium feldspar is associated with several of the veins and fractures and the granodiorite is sericitized and argillically altered throughout the area.
The Inco exploration was limited to a small area of outcrop. Additional porphyry style mineralization, identified in drill core and recent road cuts, indicates the porphyry system is significantly larger and more developed than this precious exploration suggested.

Vein style copper/moly

Prospecting in 2004/05 resulted in the discovery of massive chalcopyrite, azurite and malachite in a brecciated quartz vein 15 centimeters wide. Samples of vein material assayed to 10% copper in grab samples.

A 4.5 foot wide outcrop of quartz was discovered during the 2004/05 exploration seasons. Mineralization consisted of chalcopyrite, sphalerite, massive and disseminated molybdenite. Chip samples across the vein returned assay values to 1.6% MO. The vein is fractured and sheared with large oxidation zones characterizing the molybdenum mineralization along fractures.

The outcrop appears to be the footwall remnant of a wider vein with the hanging wall eroded. The vein outcrops on the wall of a 10 meter wide gully. This structure appears to be the surface expression of a shear zone. Trenching across this zone is necessary to determine the true width of this quartz vein/shear zone.

Geochemical Anomaly

A one kilometer by four kilometer grid was established over the eastern portion of the property and approximately 1307 soil samples were taken and analyzed for gold, silver, and lead. A large (1000 meter x 600 meter) anomalous area was identified by all three elements between 5000E and 5600E where it ends abruptly. Several values in excess of 1000 ppb gold were obtained in linear and spot anomalies within this larger zone. These spot and linear anomalies appear to be gold/silver quartz veins and alteration zones. The size and strength of the major anomaly however indicates a different style of mineralization. The granodiorite intrusion, which is the dominant rock type in this area of the property is known to host porphyry style mineralization. This intrusion could be a possible source of the highly elevated gold/silver values.

Gossan Area

A large prominent gossan occurs along the central part of Red Ridge. It is attributed to hornfelsed metasediments where primary pyrite has been reduced to pyrrhotite during contact metamorphism with subsequent surface oxidation. Stream sediments, rock, and
soil samples taken along the north and south flanks of Red Ridge indicate a 1500 meter long section of the ridge shedding anomalous values of gold and/or silver. The source of the metals yielding these values is attributed to unusually enriched gold and silver contents in these gossanous metasediments, perhaps as vein type structure or disseminated gold/silver in the sediments. Gold values to 2700 ppm in soils were obtained during reconnaissance prospecting. Silver values up to 74.4 ppm were also obtained from rock samples of the calcareous sediments from this area.

Fine grained sedimentary rocks are exposed on this part of the ground. Black, pyritized argillites, limestones, cherts and quartzites comprise this unit. Silicification and skarnification are present, particularly near intrusive contacts.

Gold and silver veins with values up to 8 gm/t and 2246 gm/t silver have been found in four locations within this gossanous area. They remain unexplored.
CONCLUSIONS AND RECOMMENDATIONS

The geological setting of the Red Ridge property is a thick Mesozoic volcano-sedimentary package which has been intruded during the upper Cretaceous by granodiorites of the Coast Plutonic Belt. Tertiary hybassal rhyolitic dikes were emplaced in all of these rock types. This provides a highly permissive setting for the development of precious metal deposits.

Most of the known precious metal occurrences were explored in a single exploration season (1988) leaving large areas unexplored, as well as the strike extentions of the known vein type occurrences.

The focus of the previous programs was entirely directed at dyke controlled precious metal veins with sample intervals bias towards sulfide rich quartz veins and veinlets. Surface trenching on these veins was done along strike instead of crosscutting the veins and determining true widths of mineralization. Soil and rock sampling show that values increased away from the clay gouge zones and increased in the vicinity of mafic dykes. Resampling of the drill core also established that the gold values in the Saddle Zone continued into the unsampled granodiorite wall rock. Strike lengths and true widths of these zones have yet to be explored.

All of the explored gold silver/shear zones with the exception of the Miller Zone occur in highly altered granodiorite on the eastern portion of the property. The large unexplained gold/silver/pb anomaly, porphyry style mineralization and multiple high grade copper/molybdenum/silver/gold occurrences in this intrusion suggest that this area should be explored as single bulk tonnage exploration target.

Precious metal veins occur within the sediments and volcanics of the gossan zone. The anomalous, gossanous metasediments of this area should also be treated as a single target. The iron rich, skarnified, calcareous sediments adjacent to multiple intrusives present a favorable environment for bulk tonnage precious metal deposits. Gossans not directly associated with exposed intrusive dykes and the overall size of the metamorphic aureole on the Red Ridge property could be suggestive of a large buried intrusion as a possible source of mineralization.
Given the favorable geology, known mineralization, and exploration success so far, the Red Ridge property warrants continued mineral exploration. The following work is recommended:

1. Prepare orthphoto base maps and compile all available geological, geochemical, and claim data. It should be possible to improve on current knowledge of structure and lithologic distributions by mapping lineaments and variations in texture visible on air photos.

2. Follow-up prospecting and mapping of mineralized areas, float occurrences, and soil geochemical anomalies identified in previous exploration.

3. Trenching of complete sections across intrusive contact zones and individual veins/skarns within the gossan zone should be carried out. Detailed mapping and sampling with special attention paid to structure, alteration, and mineralization must accompany the trenching.

4. Detailed geological mapping, mechanical trenching, and sampling of the granodiorite intrusion in the eastern portion of the property to evaluate its potential for bulk tonnage style deposits.

5. Geophysical techniques, including Induced Polarization, Electromagnetics, and Magnetics should be carried out, at least on a reconnaissance basis, to aid in understanding the location and geometry of mineralized zones.
REFERENCES

Cairnes, D.D. 1912: Wheaton District, Yukon Territory G. S. C. Memoir 31

Hart and Radloff 1990: Geology of Whitehorse, Alligator Lake, Fenwick Creek, Carcross and part of Robinson Map Areas (105D/11, 6, 3, 2, & 6)

Yukon Geology Survey: MINFILE: 100 INCO 105 D
STATEMENT OF QUALIFICATIONS

I, Larry Bratvold of Tagish Yukon, mailing address- Box 70 Tagish Yukon Y0B1T0, declare that:

1. I am the author of this report.

2. I successfully completed the Yukon Prospector Coarse in Faro, Yukon in 1973

3. I have been engaged in mining and exploration of mineral properties in Yukon, NWT, and British Columbia for 27 years.

4. I am one of the two registered owners of the Red Ridge property discussed in this report and authorized to negotiate terms of option.

Yours, truly

Larry H Bratvold

Feb 10, 2006